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Abstract—In this work we present a new alternate way to 4% 0 xiofekin
formulate the finite element method (FEM) for parallel processing "‘*" ‘» o
based on the solution of single mesh elements. The key idea o |0 -

is to decouple the solution of a single element from that of
the whole mesh, thus exposing parallelism at the element lel

Individual element solutions are then superimposed node-ise

using a weighted sum over concurrent nodes. A classic 2D 7. hp-acaption M

EIeCFrQStatIC prOblem IS Used to. V.alldate the propqsed methj 1. Space discretization 4. Global matrix assembly (imposition of BC)
obtaining accurate results. The original mesh was refined tstudy 2. Define boundary conditions (BC) 5. Solution of the algebraic system

the iterations Sca“ng behavior Wthh proved to gl’OW llnealy Wlth 3. Construction of element matrices 6. Display and evaluation of results

the number of elements. A 13 times speedup was observed for a Fig. 1. Steps in the classic finite element method (FEM).

GPU implementation over a sequential CPU version.

mathematical formulation for the proposed decoupled singl
element solution (FEM-SES) approach is presented next.
Solvm_g increasingly complex electromag_netlp (EM) pro_bA. Mathematical Formulation
lems using modern computing resources inevitably requires
employing parallel programming paradigms in responseo th Equations (1-3) present the classic FEM variational formu-
current trend of advances in microprocessor architeciite. lation for a static EM boundary value problem that will be
advent of the multicore/manycore processors brings about¢sed for simplicity, without loss of generality. Hed€(y)
important turning point in programming practices; in pauti epresents the functional to minimize, the unknowns and
lar, for EM practitioners and the scientific community in ger the boundary conditions (BC) applied.
eral this translates to rewriting legacy libraries and magpions SF(¢) =0 1)
in parallel terms to efficiently realize the performance dsen
fits offered by these modern computing resources as shown
recently in [1], [2]. This work focuses on the finite element 7 1
=5/
[0

I. INTRODUCTION

© = p, on the boundary” (2)
method (FEM), a popular numerical simulation techniquel, an df? ®)

o> [9p\°

9\", (92

Ox dy
proposes an alternate way to solving the linear systemseatkri

that is well suited for parallel manycore implementations. The functional can then be applied to each element in the
discretized domain as shown in (4-5) where the superseript

1. NEw FEM SINGLE ELEMENT SOLUTION METHOD refers to the element index.
The classic FEM formulation can be thought of as a seven n
step process as shown in Fig. 1. Traditionally, the solutibn Flp) = ZFe(S"e) (4)
FEM has been parallelized in three ways: a) partitioning and e=l 5 )
solving in parallel the derived algebraic system [1]-[3]; b Fe(pe) = 1// l<8we) . <%> 0 -
employing domain decomposition techniques [3]-[5]; and c) 2 oz Jy
Qe

using multigrid techniques [5]. However, a greater amount o

parallelism is sought to take advantage of the aforemeatiorNext the local functionals are minimized and BCs are enfbrce
manycore trend. Thereof, we propose to decouple the elemel@ment-wise independently, see equation (6). This is &her
solution from that of the whole mesh by directly computinghe new method departs from the classic FEM.

on the element stiffness matrices concurrently going from oFe

step three to five in Fig. 1, each subject to boundary con- {—e} ={K}{¢°} = {0} ={0} (6)
ditions. Such disconnected solutions are then averageé-nod 0¢° J po_reduced

wise using a weighted sum over all concurrent nodes in anTo obtain the global solution from (6) 2-step iterative
iterative fashion until convergence is achieved. Furtteean relaxation approach is proposed. As presented in Fig.2, the
this approach does not require building a global coefficiefitst step updates the local element solutions independentl
matrix skipping step four in Fig.1. A similar approach wasising a relaxation method and the second step couples the
proposed in [6] where the solution is computed by nodes. Thezal solutions using a weighted average to produce theaglob



Step 1: Update local estimate using a given Step 2: Couple local solutions using 2.05
relaxation criteria (e.g. Jacobi: x""= Mx"+5') weighted average enforcing continuity -
> For elements with 1 BC: 2.00
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» For Interior elements (no boyndary conditions): P = P () Pl (—2—) (13) «
”«z:m erior elements (no boyndary conditions): - \igtoban) = P local /m+1<¢.(,) i) e & Classio FEM
@] [k, 0 o 0 ki kil ! 1851 ¥ Element based solution
@GEL 0 Mky 0 | X =y O k|| (11) Check for convergence to desired precision.
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Fig. 2. 2-step iterative relaxation method: Step-1 shows update rationale for Number of unknowns

elements with or without BCs and Step-2 shows a weightedageeexample. Fig. 3. Energy comparison for the classic FEM and the propp&4&V-SES.

iterate. Finally, a convergence check is performed to ek 500
or repeat the process.

& Element based solution
““““ Reference linear scaling
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B. Sources of Parallelism, Advantages and Disadvantage 200

rations (thousands)

Sources of parallelism identified in the new approach are
o Element stiffness matrices can be built in parallel ans ’

preserved in distributed CPU/cores to be computed Iate‘.g
o Elements solutions may be computed in parallel indepe 2

dently of any other element. 0 100 200 300 400 500

Two drawbacks of the proposezstep iterative relaxation Number ofunknouns (thousands)
method can be identified: a) it will have slow convergence  Fig- 4. lterations scaling with the increase of problem size
similar to that of Jacobi iterative method, but a great deal
of parallelism is obtained in exchange; and b) computing tlearly generation CUDA [7] enabled GPU. This GPU has
global solution requires a single synchronization pemiien. 14 streaming processors (SM) each with 8 scalar processors
Among other advantages, the proposed FEM-SES method doesked at 1.5GHz and 512MB of global memory. A speedup
not require special numbering, no global coefficient maigix of up to 13 was obtained with respect to a sequential version
built, uses the same information as the classic FEM, and goal the CPU referred above demonstrating the potential of the
scaling is expected considering that the element conrgctivoroposed method for parallel manycore computing.
is almost constant as the problem dimensions grows. This work presents a new element-based solution approach
for FEM called FEM-SES, that uses the same information
as the classic FEM, while exposing low level parallelism
A 2D electrostatic coaxial cable problem (see Fig. 3jell suited for modern manycore-GPU processors. The sult
was implemented to validate the new method and study Rown prove the validity of the method for electrostatic
convergence behavior. Tests were conducted on an 2.4Gfbundary value EM problems and its potential for manycore
Intel Core2 Quad processor, with 4GB of global memory anshrallelism with up to 13 speedup of a GPU implementation
running 64-bit Linux system. First, sequential impleméintzs  over a sequential CPU implementation. In the extended work
for both traditional FEM and the proposeétistep iterative poth sequential and GPU implementation details will be give
relaxation method were done. Fig. 3 compares the FEM energy well as further optimized results and comparisons.
results with those of the new FEM-SES method demonstrat-
ing good agreement of the results for different number of
unknowns; thus proving the validity of the the new method[1] D. Fernandez, D. Giannacopoulos and W. J. Gross, “Maié accel-

i i ; i eration of CG algorithms using blocked-pipeline-matchieghniques,”
Next, the original mesh was refined to empirically study the \EEE Trans. on Mag., vol.46, no.8, pp. 3057.3060, 2010.

convergence scaling of the prqused meth_Od- The dotted li3e M. Mehri Dehnavi, D. Fernandez and D. Giannacopoul®nite element
in Fig. 4 represents a reference linear scaling (1:1 slopd) a sparse matrix vector multiplication on GPUSEEE Trans. on Mag.,

the solid line shows the iteration count results. ThesehlSESLh] ¥°'-If£'] ”Z{S'aﬁ’p-ﬁzn?fez‘é%& tzos.}f?ware for Microwawe Enginesting

empirically prove a sub-linear iteration scaling of thepweed Wiley-Interscience, New York, 1996, pp. 385-400.
FEM-SES method as the number of unknowns increasés, A. Takei, et. al., “Full Wave Analyses of Electromagrekields With an

; ; ; ; ; ; Iterative Domain Decomposition MethodEEE Trans. on Mag., vol.46,
which is a desirable scaling property of iterative methods. 0.8, pp. 28602863, 2010,

Considering that recently manycore (i.e. graphic proogssifs) L. yuanging and Y. Jiansheng, “A finite element domain ateposition
units-GPUSs) processors have become an important computingcombined with algebraic multigrid method for large-scakcgomagnetic
; ; ; ; field computation,1EEE Trans. on Mag., vol.42, no.4, pp. 655-658, 2006.
resource available in al_most all computm_g systems, _yvtha J. P. A. Bastos and N. Sadowski, "A new method to solve 3atme-
have demonStrate_d significant speedup Qf important sB®nti ~ (odynamic problems without assembling an Ax=b systeiEEE Trans.
kernels [2], a straight forward GPU version of the proposed on Mag., vol. 46 no. 8, pp. 3365-3368, 2010.

method was implemented using an NVIDIA GT 8800, aﬁ] NVIDIA CUDA, http://developer.nvidia.com/object/da.html.
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